The Special Operations Medical Association's Official Journal

JOURNAL of SPECIAL OPERATIONS MEDICINETM JOURNAL OF SPECIAL OPERATIONS MEDICINE ME

THE JOURNAL FOR OPERATIONAL MEDICINE AND TACTICAL CASUALTY CARE

- > Case Report: Frostbite: G6PD Deficiency?
- > Case Report: Evaluation for Testosterone Deficiency
- > Emergency Cricothyroidotomy in TCCC
- > Junctional Tourniquet Training Experience
- Tactical Emergency Casualty Care Initiative
- > Self-expanding Foam in Noncompressible Hemorrhage
- > Community Approach to Reducing Mortality From AVIs
- > Medical Readiness in the Democratic Republic of the Congo
- > Optimal Device Length for Needle Thoracostomy
- Legal Substance Abuse and Health Complaints
- > Resuscitation During Critical Care Transportation in Afghanistan
- > Prolonged Field Care Working Group Position Papers
- > Tourniquet Conversion in Prolonged Field Care
- > Burn Casualties in Prolonged Field Care
- > Ongoing Series: Clinical Corner, Human Performance Optimization, Infectious Diseases, Injury Prevention, Operational Medicine in the Austere Environment, and more!

Dedicated to the Indomitable Spirit and Sacrifices of the SOF Medic

PROLONGED FIELD CARE

Prolonged Field Care Working Group Position Paper

Prolonged Field Care Capabilities

Justin A. Ball, 18Z; Sean Keenan, MD

The Special Operations Command Prolonged Field Care Working Group (SOCOM PFC WG), composed of medical-specialty subject matter experts, has been tasked to evaluate the current training and preparedness of Special Operations Forces (SOF) medics. The first formal position paper from the working group suggests that medical providers consider the following list of capabilities when preparing their medical personnel to provide prolonged field care (PFC) in austere settings. It is presented in a "minimum, better, best" format. The intent is to demonstrate those basic skills, with suggested adjunctive skills and equipment that may be used when considering PFC training

At first glance, the list may seem somewhat simple, but it emphasizes basic medical skills that, when put together, allow for a more comprehensive approach to critical patient care in an austere setting. Of note, equipment is relatively de-emphasized, since medical skills and training should be the focus of preparing the SOF provider to give this care.

PFC requires the following capabilities in at least some capacity. It should be reassuring to the SOF provider that most of the listed capabilities encompass basic medical skills received, at a minimum, in initial training. In addition, there may be a few that require further study and practice, as well as additional references or equipment not commonly carried. By focusing study and equipment preparation on those capabilities that are less familiar, the SOF provider can be reasonably expected to provide PFC.

The 10 capabilities are as follows:

- 1. Monitor the patient to create a useful vital signs trend
 - a. Minimum: blood pressure cuff, stethoscope, pulse oximetry, Foley catheter (measure urine output), mental status, and an understanding of vital signs interpretation. Use a method to accurately document vital signs trends.
 - b. Better: add capnometry

- c. Best: vital signs monitor to provide hands-free vital signs data at regular intervals
- Resuscitate the patient beyond crystalloid/colloid infusion
 - a. Minimum: field fresh whole blood (FWB) transfusion kits
 - b. Better: maintenance crystalloids also prepared for a major burn and/or closed head injury resuscitation (two to three cases of lactated Ringer's solution or PlasmaLyte A; hypertonic saline); consider adding lyophilized plasma as available; fluid warmer
 - c. Best: maintain a stock of packed red blood cells, fresh frozen plasma, and have type-specific donors identified for immediate FWB draw.
- 3. Ventilate/oxygenate the patient
 - a. Minimum: provide positive end-expiratory pressure (PEEP) via bag-valve mask (you cannot ventilate a patient in the PFC setting [prolonged ventilation] without PEEP or they will be at risk of developing acute respiratory distress syndrome)
 - b. Better: provide supplemental oxygen (O₂) via an oxygen concentrator
 - c. Best: portable ventilator (i.e., Eagle Impact ventilator [Zoll Medical Corp., http://www.impactinstrumentation.com] or similar) with supplemental O₂
- 4. Gain definitive control of the patient's airway with an inflated cuff in the trachea (and be able to keep the patient comfortable)
 - a. Minimum: medic is prepared for a ketamine cricothyrotomy
 - b. Better: add ability to provide long-duration sedation
 - Best: add a responsible rapid-sequence intubation capability with subsequent airway maintenance skills, in addition to providing long-term sedation (to include suction and paralysis with adequate sedation)
- Use sedation/pain control to accomplish the above tasks
 - a. Minimum: provide opiate analgesics titrated intravenously

All articles published in the Journal of Special Operations Medicine are protected by United States copyright law and may not be reproduced, distributed, transmitted, displayed, or otherwise published without the prior written permission of Breakaway Media. LLC. Contact Editor@JSOMonline.org.

- b. Better: trained to sedate with ketamine (and adjunctive midazolam as needed)
- c. Best: experienced with and maintains currency in long-term sedation practice using intravenous morphine, ketamine, midazolam, fentanyl, and so forth.
- 6. Use physical examination/diagnostic measures to gain awareness of potential problems
 - a. Minimum: uses physical examination without advanced diagnostics, maintain awareness of potential unseen injuries (abdominal bleed, head injury, and so forth)
 - b. Better: trained to use advanced diagnostics such as ultrasound, point-of-care laboratory testing, and so forth
 - c. Best: experienced in the above
- 7. Provide nursing/hygiene/comfort measures
 - a. Minimum: ensure the patient is clean, warm, dry, padded, catheterized, and provides basic wound care
 - b. Better: elevate head of bed, debride wounds, perform washouts, wet-to-dry dressings, decompress stomach
 - c. Best: experienced in all the above
- 8. Perform advanced surgical interventions
 - a. Minimum: chest tube, cricothyrotomy
 - b. Better: fasciotomy, wound debridement, amputation, and so forth
 - c. Best: experienced with all the above
- 9. Perform telemedicine consult
 - a. Minimum: make reliable communications, present patient, pass trends of key vital signs
 - b. Better: add laboratory findings and ultrasound images
 - c. Best: video teleconference
- 10. Prepare the patient for flight
 - a. Minimum: be familiar with physiologic stressors of flight
 - b. Better: trained in critical care transport
 - c. Best: experienced in critical care transport

KEYWORDS: prolonged field care, PFC, medic skills, medical capabilities, medic training

Mr Ball works at the USASOC Surgeon's office, Fort Bragg, NC.

Dr Keenan is command surgeon at Special Operations Command, Europe (SOCEUR), Stuttgart, Germany. sean.keenan1. mil@mail.mil.